Skip to main content

img2img

前言

现在终于可以介绍Stable Diffusion除了文生图(txt2img)之外最重要的功能: 图生图(img2img)。顾名思义,除了根据正向和反向提示词之外,还需要基于一张图片生成图。这个模式下功能很多我们挨个说

img2img

图生图模式下的默认功能,我们先看一下主界面:

上面还是正面提示词和负面提示词,接着是一个上传图片的区域,写着「Drop Image Here - or - Click to Upload」。然后就是相关参数,大部分在文生图里面已经见过,只有Resize modeDenoising strength是新增的,我们挨个介绍:

  1. Resize mode。当上传图片尺寸和要生成的图的尺寸不同时,需要选择调整大小方案。
  2. Sampling Method用于去噪,平衡生成图的速度和质量。内置多种算法可供选择。目前看起来DPM++ 2M Karras用的比较多。
  3. Sampling Steps是去噪过程的采样步骤数。越多越好,但需要更长的时间。一般在20-28之间。
  4. 宽度和高度(Width/Height),输出图像的大小。按需调整即可。
  5. Batch Count 批次数量,我更愿意用下面的Batch size调整生产图的总数。
  6. Batch size,每一批次要生成的图像数量。可以在测试提示时多生成一些,因为每个生成的图像都会有所不同。生成的图像总数等于Batch Count乘以Batch size。
  7. CFG(Classifier Free Guidance) scale,提示词相关性, 用于控制模型应在多大程度上遵从您的提示。他有几个只可选: 1(大多忽略你的提示),3(更有创意),7(遵循提示和自由之间的良好平衡),15(更加遵守提示),30(严格按照提示操作),常用的是7,做个平衡。测试时可以换这个值体验区别。
  8. Denoising strength。降噪强度,常翻译成「重绘幅度」,取值范围是0-1,描述新生成的图片与原图的相似程度,数值越小,采样越少,相似度越高,算的越快(采样数=Denoising strength * Sampling Steps)
  9. Seed,生成的每个图像都有自己的种子值,修改这个值可以控制图像的内容。
  10. Script。用户可以编写脚本代码,以实现一些特殊定制的功能。这个未来可以具体说,目前还没有遇到。

先具体说说Resize mode(当然上传的图片最好与生图设置的一致):

  1. Just resize:调整图片为生图设置的宽高。若上传图片的宽高与生成设置的宽高不一致,则该图片会被压扁。这个我非常不推荐使用,会让图片非常奇怪。
  2. Crop and resize:裁切图片以符合生图的宽高,我最推荐的方式。
  3. Resize and fill:裁切并调整图片宽高,若上传图片的宽高与生成设置的宽高不一致,则多出来的区域会自动填满。
  4. Just resize (latent upscale):调整图片大小为生图设置的宽高,并使用潜在空间放大。

这个模式下最主要的就是调Denoising strength参数。我们用下面这张从网上找的新垣结衣的照片来体验:

首先注意,我选择这个图是有2个原因的:

  1. 这个一张人像正面近像,在生成新图后更容易感受到SD的模型的作用
  2. 照片可以看到手部有动作,我会生成一张有问题的图让你感受到目前图生图模式的问题

我希望通过SD把这个真人照片做出动漫的效果,咱们先来个较大的Denoising strength的值,为了方便对比我用了固定的Seed:

我直接把生成参数列出来:

a woman with a short hair and a white shirt is posing for a picture with her hand on her chin, a photorealistic painting, Ayami Kojima, precisionism, perfect face
Negative prompt: dongwm-nt,bad finger, bad body
Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 8, Seed: 2345567052, Size: 512x512, Model hash: cbfba64e66, Model: CounterfeitV30_v30, Denoising strength: 0.65, Clip skip: 2

这里有一点需要特别的提一下,正面提示词不是我写的。在图生图模式里,生成按钮左边有2个选项,分别是「Interrogate CLIP」和「Interrogate DeepBooru」。在上传图片后,可以通过「Interrogate CLIP」反推出提示词,我这个就是这么生成的。另外也说一下「Interrogate DeepBooru」,这说的是一个开源的女孩图片特征提取器,上传图片可以获得图片的标签,我已经把链接都放在了延伸阅读里面:

PS: 如果你选择DeepBooru反推,不能直接使用那些标签,你需要从中筛选需要的、合理的标签,否则结果会完全偏离。

好的,说回来。之前已经说过,Denoising strength的值越大越和原图不符,所以如果你希望「微调」,这个值不应该大于0.4,现在我们先取了一个更大的值,你可以看到生成图的人物手部的结果是有问题的。而且注意,负面提示词dongwm-nt本身是包含bad finger,bad body这些的。

图生图不是万能的甚至很难达到你的预期

是的,这是我的体验。这个模式下如果你想要生成你想要的效果,对于大模型、微调模型、提示词、参数等都有要求,在前期,你很可能生成奇怪的图,你需要不断尝试总结经验。

不同的Denoising strength效果的区别

我们使用x/y/z脚本试试不同的重绘幅度值看看生成的效果:

可以看到随着Denoising strength变大,越来越不像原图了。

同时,我们还可以重叠各种微调模型,下面是使用了VAE、Lora和HyperNetwork后的效果:

这就是微调模型的作用,不过注意,微调后手部后两张还是会有问题。

PS,这个例子用的主模型是: https://civitai.com/models/4468/counterfeit-v30

绘图(Sketch)

第二个Tab是Sketch,他适合有美术基础的用户,可以给一张现有的图加东西,或者画出你想要的东西,然后再输入提示词完善,我这个没有画画细胞的人基本不用,在这里也举2个例子(我也就这个水平啦)。

因为我们一会要用笔刷编辑图片,我需要用到颜色,所以加启动参数,重启webui:

./webui.sh --disable-safe-unpickle --gradio-img2img-tool color-sketch

Ok, 先尝试基于现有图做修改的,我用了下面这张图:

上传后就进入了编辑模式,然后我用笔刷选了个粉色的把头发涂变色(当然提示词中并没有提到粉色头发):

可以看到Denoising strength到了0.7才看起来正常,前面的那个「涂」的效果很明显。所以如果你使用和原图差别很大的颜色涂,那么需要更大的重绘幅度值,但是相对的,生成图和原图差别很大。如果选择对比色较少的例如黑色,那么重绘幅度0.4可能就够了。

接着我们试试完全从零画一幅画(叫「涂鸦」更合适),为了展示SD的厉害之处,我特意选择了一个「复杂」的构图,在本灵魂画手非常努力作画后,看一下生成图的效果这样的:

注意哈,因为这个模式需要上传图,所以我这里只是截了个终端的黑色区域作为背景图。我知道大家看不懂我的Sketch🤦🏻 ♀️,解释一下,这幅画我希望展示蓝天白云,下面是草地和几棵树(提示词也非常直白),草地中间还有一点小溪(实在不知道溪水用什么颜色就直接换个绿区别一下)中间黑色的是背景我没涂东西,主要想看看SD会怎么理解。

这个效果我还是很满意的,可以说0.65的图已经完全达到我的预想了。

PS: 这种绘画的方法需要更大的Denoising strength值,否则用户就得具有极强的画画天赋啦

局部绘制(Inpaint)

用户指定在图像中特定区域进行修改,而保证其他区域不变。这个我认为图生图模式下最又实用价值的模式,类似换脸、换衣服、换背景等等需要都可以通过它来实现。在上面的Sketch里面的例子一,我曾经想给新垣结衣换头发颜色,但是需要Denoising strength值比较大才会看起来正常,但是通过也和原图差别非常大了。而局部绘制可以平缓的给新垣结衣换头发颜色。来试试:

我涂黑了头发,当然差不多就可以,SD会清楚你想把头发改颜色,另外要在提示词加上pink hair让SD朝着粉色头发来。可以看到随着Denoising strength增大,头发越来越粉。

接着看一下参数:

这次新增5个参数:

  1. Mask blur。图片上的笔刷毛边柔和程度。我一般默认
  2. Mask mode。选择要让AI填满涂黑区域(Inpaint masked),或是填满未涂黑区域(Inpaint not masked)。
  3. Masked content。要填充的内容类型。Fill:让AI参考涂黑附近的颜色填满区域;Original:在填满区域的时候参考原图底下的内容;latent noise:使用潜在空间填满,可能会生出跟原图完全不相关的内容;latent nothing:使用潜在空间填满,不加入噪声
  4. Inpaint area。选择要填满整张图片(Whole picture)或是只填满涂黑的区域(Only masked)
  5. Only masked padding, pixels。像素内距。

局部绘制-涂鸦蒙版(Inpaint sketch)

局部绘制Inpaint的一个更细的分类,它们的区别是局部绘制中,用户涂黑的部分表示该部分可以被重绘,而在局部绘制-涂鸦蒙版(inpaint sketch)中,用户涂鸦的部分不仅表示可以重绘,用户涂鸦的内容还会成为图像生成的内容来源,换个表达方法,局部绘制-涂鸦蒙版是「局部绘制(Inpaint)」+「绘图(Sketch)」的组合,通过一个例子来理解:

我涂了2个地方:1. 头发上的墙上背景,我希望它被P掉,2粉色头发。然后提示词加了pink hair让SD能更理解我表达。所以最终生成的图里面的特点:

  1. 除了头发和背景改变,对人物外貌动作等未改变(因为没有产生绘制),而且头发形状整体保持住了。
  2. 我sketch使用了一个偏紫的颜色,所以生成的图的头发颜色参考了这个颜色生成的微紫的粉色
  3. 可以看到0.6的效果是最好的,值越小越偏原图就能看出我涂鸦的痕迹,值越大头发走的越偏离我的意思

局部绘制-上传蒙版(Inpaint upload)

可以在其他工具里(例如PS)做好蒙版上传,而不是在SD里面创建蒙版。对于一些专业的用户这是一种更好的选择,因为在浏览器绘制蒙版的功能很简陋,其他专业软件做出来的效果会好得多。不过我不会PS这里就不举例了。

延伸阅读

  1. http://dev.kanotype.net:8003/deepdanbooru/
  2. https://github.com/KichangKim/DeepDanbooru